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Introduction 
 

The U.S. Fish and Wildlife Service’s Comprehensive Assessment and Monitoring Program 

(CAMP) produces a variety of reports that summarize and tabulate salmonid data from collection 

sources in California’s Central Valley.  To prepare certain of these reports, in-depth statistical 

analyses and the development of complex databases are required.  Through a cooperative 

agreement, CAMP contracted the Pacific States Marine Fisheries Commission (PSMFC) and a 

statistical subcontractor (Western EcoSystems Technology; WEST, Inc.) to assist in evaluating 

the feasibility of developing a comprehensive data collection, storage, and analysis system for 

information collected from rotary screw traps in the Central Valley.  The ultimate purpose of 

such a system would be to document and understand changes in the abundance of juvenile 

salmon in the Central Valley.  This feasibility study represents Phase 1 of a planned three phase 

program which may ultimately result in timely and defensible valley-wide estimates of juvenile 

salmon abundance. 

 

The abundance of juvenile Chinook salmon (Oncorhynchus tshawytscha) has been monitored at 

12 or more sites in the Central Valley using rotary screw traps (RSTs) for approximately 13 

years.  Trapping activities at most RST sites has routinely occurred during all or a part of the 

year since 1995.  Much of the collected data have never been presented in report form, and 

different analytical techniques have been used to estimate fish numbers passing the traps.  

Separate or non-existent reports and different analytical techniques make it difficult, if not 

impossible, to understand valley-wide long-term trends in juvenile salmon production.  These 

factors also confound the ability to understand how restoration activities influence juvenile and 

adult salmon production.  To address the difficulties inherent in trend detection under the current 

system a single comprehensive, multi-faceted data acquisition, storage, and analysis system is 

needed.  This system, if built, would be designed to collect and manage screw trap data, as well 

as produce statistically robust and repeatable estimates of juvenile Chinook abundance based on 

RST catch data. 

 

Because the development of such a system is inherently challenging, CAMP determined that a 

feasibility evaluation was the appropriate first step.  This Phase 1 - Task B report addresses the 

feasibility of implementing uniform data analysis methods to estimate abundance of juvenile 

Chinook salmon across California’s Central Valley.  This report is part of a larger feasibility 

report that includes recommendations for a comprehensive data entry and management system.  

The uniform analysis methods include algorithms for estimating the abundance of different life 

stages (fry, parr, smolts, and yearlings) and runs (fall, late fall, spring, and winter).  These 

algorithms are designed to be applicable to all Central Valley RST data, thus unifying estimation 

methods and making comparison among sites easier. 

Activities 
 

PSMFC personnel spoke or corresponded with:  Ayesha Gray (Cramer Fish Sciences), Connie 

Shannon (PSMFC / California Department of Fish and Game), Doug Burch (California 
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Department of Fish and Game programmer), Doug Threloff (USFWS-Sacramento, CAMP 

program coordinator) , Michelle Workman (formerly with the East Bay Municipal Utility 

District and now with the U.S. Fish and Wildlife Service (USFWS)), Liz Cook (formerly with 

California Department of Water Resources).  Meetings attended by Doug Threloff, Mike Banach 

(PSMFC fisheries biologist), Greg Wilke (PSMFC programmer), Trent McDonald (West, Inc. 

statistician and programmer), Kellie Whitton (USFWS-Red Bluff biologist), Jim Earley 

(USFWS-Red Bluff biologist), David Colby (USFWS-Red Bluff biologist), Bill Poytress 

(USFWS-Red Bluff biologist), and Felipe Carrillo (USFWS-Red Bluff biologist).  Field visits to 

the Red Bluff Diversion Dam, Battle Creek, and Clear Creek screw trap sites.  PSMFC also 

examined databases provided by Cramer Fish Sciences and the USFWS Red Bluff office.  These 

databases contained RST data collected on the Stanislaus River, Battle Creek, and Clear Creek.  

Recent Battle Creek and Clear Creek annual reports were examined to determine data analysis 

routines used by USFWS Red Bluff office.  Analysis routines used by the USFWS Red Bluff 

office for RSTs located at the Red Bluff Diversion Dam were demonstrated by Felipe Carrillo. 

 

In addition to corresponding with most of the people listed above, personnel at WEST Inc. 

reviewed the following documents relating to RST data and estimation techniques: 

 

• Battle Creek RST report for Oct 2005 - Sep 2006; 

• Red Bluff Diversion Dam RST reports for 2005 and 2006; 

• Clear Creek RST report for Oct 2006 - Sep 2007; 

• Mill and Deer Creek RST report for 1999; 

• Butte and Big Chico Creek RST report for 2006-2007; 

• Knights Landing RST report for Sep 1999 through Sep 2000; 

• Feather River RST report for 2002 – 2004; 

• Yuba River RST report for 2004 – 2005; 

• Lower American RST River report for Oct 1998 – Sep 1999; 

• Lower Mokelumne River RST report for Dec 2005 – Jul 2006; 

• Lower Stanislaus River RST reports for 1999 and 2008; 

• Lower Tuolumne River RST report for 2003; 

• Lower Merced River RST report for 2008; 

• the quantitative Appendix of the 2000 Red Bluff Diversion Dam RST report by Martin; 

• “Determination of Salmonid Smolt Yield with Rotary-Screw Traps in the Situk River, 

Alaska, to Predict Effects of Glacial Flooding” by Thedinga et al (1994, North American 

Journal of Fisheries Management, p. 837-851); 

• the 2000 review of Red Bluff Diversion Dam and Stanislaus River RST methods 

conducted by L. McDonald and S. Howlin; 

• the 2000 review of Red Bluff Diversion Dam and Stanislaus River RST methods 

conducted by J. Skalski; 

• response of D. Neeley to comments made by McDonald, Howlin, and Skalski during 

their review of the Red Bluff Diversion Dam and Stanislaus River RST methods; and 

• the “Rotary Screw Traps and Inclined Plane Screen Traps” chapter of the American 

Fisheries Society protocol manual. 
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WEST Inc also reviewed the following databases provided by PSMFC: 

 

• Cramer Fish Sciences databases containing RST data collected at Caswell State Park and 

Oakdale trapping sites on the Stanislaus River, and Hatfield State Park on the Merced 

River; and 

• USFWS databases containing RST data collected from the Lower Clear Creek, Upper 

Clear Creek, and Upper Battle Creek RST’s. 

Minimum Field Data 
 

The list of variables in this sub-section represents a minimum set of field measurements to be 

collected at each site.  From these data, other quantities (such as catch, efficiency, % water 

fished, etc.) can to be estimated and in turn used to estimate abundance.  Additional field data 

pertinent to a site may be collected.  Additional field data may be collected if they are useful for 

purposes other than abundance estimation, or if they pertain to a unique feature of the site and 

can explain variation in daily catch or trap efficiency.  Additional data that might be pertinent to 

a site include staff gauge readings of water depth, stream width, fish weight, etc. 

 

Field data are of three basic types: (1) trap placement data, (2) trap check data, and (3) efficiency 

trial data.  Within trap check data, four classes of data exist: (a) trap operating characteristics, (b) 

physical environment measures, (c) fish counts (1 value per trap check), and (d) individual fish 

measures (multiple values per trap check). The minimum set of variables to be measured for each 

type of data is listed below. 

Trap Placement Data 
 

Any time a trap is turned on (e.g., after installation or after movement) or turned off (e.g., prior 

to removal or prior to movement), the following data should be recorded: 

 

1. Trap ID 

Description: Manufacture’s serial number or other unique code associated with the 

trap.  This number should be used to identify the trap for the trap’s entire lifetime.  

This number should not be changed or re-assigned to another trap; 

2. Site code 

Description: Unique ID of the overall stream location, e.g., stream name and river 

mile.  If trap was installed or turned on, this is the code for the trap’s location after 

Date and Time (below).  If the trap was pulled or turned off, this is the code for the 

trap’s location prior to Date and Time; 

3. Fishing location 

   Description: Unique ID of fishing location within the site.  For example, ‘01’, ‘02’, 

or ‘03’ if there are 3 fishing locations at a site.  If there is only one fishing location 

at the site, this number assigned should be ‘01’; 

4. Date 

Description: Date of the change in trap status.  Date that the trap began fishing, or 

date that trap stopped fishing; 
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5. Time 

Description: Time of the change in trap status.  Time trap began fishing, or time trap 

stopped fishing; and 

6. Fishing? 

Description: A binary Yes/No variable.  Yes = trap was fishing after the above Date 

and Time, No = trap was not fishing after the above Date and Time. 

 

 

Every trap must have a [site, fishing location, date, time] quadruplet corresponding to when it 

began fishing, and a [site, fishing location, date, time] quadruplet when it stopped fishing, unless 

the trap remains fishing on the current date.  Trap ID can be used to lookup cone diameter, max 

cone depth, and other characteristics of the trap.  Site can be used to lookup characteristics of the 

overall installation, such as river mile, latitude, longitude, etc.  Site and Fishing location can be 

used to lookup characteristics of the trap’s specific locations, such as channel location (thalweg, 

right bank, left bank, etc), bottom type, etc. 

Trap Check Data 
 

A trap check occurs when a RST is visited and captured fish are processed.  The exact schedule 

of trap checks is left to the biologists in charge of each program, and can vary from RST to RST.  

Ideally, traps will be checked every day during the season when the species of interest is 

expected to be in the river.  When traps are not checked on a day, data for that day will be treated 

as missing (see imputation method described in Abundance Estimation Methods). 

 

At a minimum, the following data should be collected every time a trap is checked: 

 

1. Trap operating characteristics: 

a. Site code (to match site code in Trap Placement data, e.g., stream name and river 

mile); 

b. Fishing location (to match fishing location in Trap Placement data); 

c. Date (of trap check); 

d. Time (of trap check); 

e. Cone rotation counter reading; 

f. Cone rotation speed (rpm); 

g. Submerged cone depth (meters, measured from water surface to lowest part of 

submerged cone or read from gauge on trap); and 

h. Trap retention rate (intra-trap catch rate, depends on baffle configuration, usually 

50% or 100%). 

2. Physical environment variables: 

a. Water velocity (m/s, near trap, preferably near front of cone); 

b. Water temperature (°C, in front of cone at depth); 

c. Debris occlusion (%, visual); 

d. Turbidity (at least Secci depth); 

e. Average flow between last check and current check (cubic meters per second, 

measured at most representative river gauge); and 

f. River gauge ID (Identifier of river gauge used to calculate the above average 

flow). 
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3. Fish counts: 

a. Total number of unmarked fish caught (count or estimate); 

b. Estimate? (Yes/No, Yes = number of unmarked fish is an estimate, No = number 

of unmarked fish is a complete count); 

c. Total number of marked fish caught; and 

d. Total number of measured unmarked fish (number in subsample, if subsample 

was taken). 

4. Individual fish data: 

a. For marked fish: 

i. Mark description code (e.g., AF-CL-BB = adipose fin – clipped – stained 

Bismarck brown, must be sufficient to identify the release group); 

ii. Fork length; and 

iii. Species. 

b. For measured unmarked fish: 

i. Fork length; 

ii. Species; and 

iii. Visual smolt index (0,1,2,3,4,5). 

 

It is assumed that the trap has been fishing between date and time of the previous check until 

date and time of the current check.  Cone rotations between previous check and current check, 

times rotation speed, will be used to compute amount of water sampled. 

Efficiency Trial Data 
 

Efficiency trials consist of releasing a known number of (uniquely or batch) marked fish 

upstream of a RST.  By noting the number of marked fish from each release that were later 

captured in the RST, efficiency (probability of capture) can be estimated.  Like trap checks, the 

exact schedule efficiency trials is left to the biologist in charge of each program.  Ideally, it will 

be possible to release small batches of marked fish every day so that efficiency trials occur 

continuously throughout the season.  However, large numbers of efficiency trials are not possible 

at many RSTs.  In these cases, two to three efficiency trials per week are recommended.  Less 

frequent efficiency trials are acceptable because probability of capture will be modeled after the 

season (see Abundance Estimation Methods below). 

 

For every efficiency trial, the following should be recorded: 

1. Date (of efficiency trial release); 

2. Time (of efficiency trial release); 

3. Dark? (Yes/No, Was sun down during release?); 

4. Release location code (e.g., stream name and river mile); 

5. Location of release in channel (e.g., LB, CC, RB, etc. for left bank, center current, right 

bank, etc.); 

6. Nearest downstream RST site code; 

7. Distance from release location to nearest RST (river km); 

8. Mark description code (to match fish data above); 

9. Number of marked fish released;  

10. Holding time (hours); 

11. Fish source (wild, hatchery, etc.); 
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12. Species; 

13. Number of fish measured; and 

14. Fork length for every measured fish. 

Abundance Estimation Methods 
 

This section contains recommendations for statistical estimation of abundance from data 

collected by RSTs in the Central Valley.  These estimation techniques are designed to utilize the 

minimum set of field data (previous section) and are intended to be applicable to all RST sites 

that collect this data.  The recommended analysis is widely applicable because it applies to all 

sites that collect the minimum set of field data.  The recommended analysis is stable in the sense 

that, when appropriate, sites and years can be combined to improve model estimation.  Such 

combination of data would likely require judicious use of covariates (such as ‘site’ and ‘year’ 

variables), but can be done in some cases. 

 

The analysis leaves open the exact protocol by which researchers measure variables contained in 

the minimum set of data.  Ideally, each site can provide unbiased and precise (low variance) 

estimates of the basic variables listed in the previous section.  This means, ideally, that each site 

could provide unbiased estimates of counts, velocity, cone depth, rotations, etc.  If estimates of 

the basic variables are unbiased, the abundance estimates produced using methods in this section 

should also be unbiased.  If unbiased estimates of the minimum dataset cannot be constructed, at 

least consistently measured estimates should be used.  Readings from a poorly calibrated velocity 

or temperature meter is an example of a consistently measured, yet biased estimate.  Consistently 

measured basic variables, when used in abundance estimation, will result in an index of juvenile 

abundance at the site that can at least be assessed for trends. 

 

As called for in the cooperative agreement between CAMP and PSMFC, the methodological 

recommendations contained in this section were designed to estimate abundance of all life stages 

and runs of juvenile Chinook salmon.  However, the methods outlined here are not specific to 

life stages or runs of a single species.  The methods are applicable to all species, life stages, and 

runs provided similar and adequate data on these populations can be collected.  The only caveat 

to wide-spread application of these methods is that the estimator’s performance, while 

theoretically sound, may not perform well when samples sizes are low.  A prudent amount of 

faith should be placed in abundance estimates produced by these methods for species other than 

Chinook. 

 

General Estimation Approach 
 

In his review of methods at Caswell State Park on the Stanislaus River, Skalski (2000) 

mentioned the virtues of a design-based estimation approach, and the vices of a model-based 

estimation approach.  The general definition of a design-based approach is that the analysis relies 

on a few simple assumptions about the structure of the data and uses replication of measurements 

or samples as the basis for assessing variation.  For example, if RST catch and trap efficiency 

could be assessed every day without error, a design-based approach would estimate abundance 

that day as catch divided by efficiency.  Variation in abundance across days would be used to 
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construct confidence intervals.  Design-based approaches typically involve relatively simple 

estimators, like means, ratios, and products.  On the other hand, model-based approaches make 

relatively weighty assumptions about the data structure, or what influences a particular variable, 

and uses these assumptions as the basis by which they assess variation.  For example, a model-

based approach could assume that the mean of a response variable follows a regression 

relationship, and that errors in the regression relationship follow a normal distribution.  Model-

based estimators can become quite complicated depending on the complexity of the situation and 

assumed model. 

 

The virtues of a design-based approach include its simplicity and lack of assumptions (Skalski, 

2000).  It is hard to argue against properly designed and executed design-based estimates (Olsen 

and Smith, 1999).  However, the two biggest vices of a design-based approach are its inability to 

include measurement error and a high data requirement that is generally required.  Design-based 

approaches also have difficulty incorporating missing values into the analysis.  The virtues of a 

model-based approach include its ability to incorporate measurement error, lower data 

requirements, and the ability to make estimates outside the data range (extrapolation) when 

necessary.  However, the main vice of a model-based approach is the fact that its assumptions 

will always be violated to some extent and thus estimates are easy to question.  Model-based 

approaches can use outputs of a model as substitutes for field data, thereby giving researchers the 

feeling that results are “far from” or “insulated from” the original data. 

 

The abundance estimation procedure described here is neither fully design-based nor fully 

model-based.  The approach advocated here uses raw data when it is appropriate, but assumes a 

flexible non-linear model for catches and efficiencies when raw counts or efficiencies do not 

apply to an entire interval between checks.  The non-linear model allows estimation of daily 

abundance during times when the trap was not operating or when an efficiency trial has not been 

done for quite some time.  In utilizing a model, the data collection requirements are reduced 

relative to a fully design-based approach because fewer checks and efficiency trials can be 

performed once the model is established and stable.  If the models continue to be developed over 

time, accuracy and precision will increase through time.  Utilizing a model for certain tasks also 

smoothes a portion of the random noise inherent in measurements, thus making estimate more 

stable. 

 

The approach advocated here uses raw catch data when it is available, and model based estimates 

when raw catch is not available.  On days when a RST check meets protocol, raw counts are 

inflated by a current estimate of trap efficiency without aid of a model for catch.  A trap check 

‘meets protocol’ if the interval between checks was 24 ± 2 hours (or, some other interval 

surrounding 24; in the remainder, 2 hours will be assumed) and the trap was in operation for that 

entire period.  When counts are not available for a day (check does not ‘meet protocol’), the 

approach employs a generalized additive model (GAM) (Hastie and Tibshirani, 1990) to estimate 

catch as a function of study covariates.  To estimate trap efficiencies, the approach uses a second 

GAM estimated from past and current efficiency trials.  Both of these GAMs can be functions of 

time (date of season) and other factors such as flow, percent flow sampled, turbidity, distance 

from trap to release site, etc. 
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Several RST operations in the Central Valley already employ models to infer various quantities 

when they are missing.  For example, a 5-day moving average with a triangular weight function 

is used on data collected at Caswell State park to estimate catch on days when it is missing.  

Moving averages are special cases of a GAM model.  Another model typically employed by RST 

operations is to assume trap efficiency remains constant between efficiency trials.  On days when 

an efficiency trial has not been conducted, researchers typically use efficiency from the last trial 

to inflate raw counts. 

Abundance Estimation 
 

The basic quantities contained in this sub-section are estimable from the minimum set of field 

data collected at a site.  At most sites, these quantities can be estimated from historical data and 

thus past estimates could be re-computed or updated using this methodology if necessary.  In 

other cases, these estimates cannot be computed from historical data.  At those sites, data 

collection procedures will need to change if these procedures are to be applied in the future. 

 

The two basic quantities needed to estimate abundance at every site are: 

 

•  = either the enumerated or estimated catch of unmarked fish of a certain life stage in 

trapping location i at the site during the 24 hour period indexed by j.  For example,  = 

estimated catch at the 2
nd

 trapping location during day 3; and 

•  = estimated trap efficiency at trapping location i of the site for a certain life stage 

during the 24 hour period indexed by j. For example,  = estimated efficiency at the 2
nd

 

trapping location during day 3. 

 

Note that, for notational convenience, a subscript for site is not present in the above quantities.  It 

is assumed that estimates will be computed separately for each site, thus eliminating the need for 

a site subscript. 

 

Assuming the above quantities can be computed, an estimate of the number of fish passing the 

trap during the 24-hour period indexed by j is: 

  

  .  (1) 

Estimation of  

 

The estimate of catch, , will be computed in one of three ways.  First, if the interval between 

check j and check j – 1was 24 ± 2 hours and the trap operated properly for the entire period,   

will be the total catch of unmarked fish in the trap at check j.  Note that the amount of time the 

trap operated properly is estimated as the difference in rotation counter readings multiplied by 

cone rotation speed averaged over the two checks.  When the check meets protocol,  can 

either be a complete enumeration of captured fish, or an estimate based on random subsampling 

when too many fish are captured to enumerate. 
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The second method of computing  will be used when the trap fishes for less than 22 hours.  If 

the trap fished for less than 22 hours between check j and check j – 1, the fish count at time j will 

be adjusted using a diurnal logistic regression model.  This diurnal logistic regression model will 

utilize efficiency trial data to estimate the proportion of a typical 24-hour fish count passing in a 

given period of time.  To estimate this logistic regression, data from many efficiency trials and 

multiple checks will be used.  Assuming mi is the number of marked fish captured within 24 

hours of release during the i
th

 efficiency trial, the logistic regression will estimate the proportion 

of mi captured within t hours (t < 22) of release as a function of other covariates like day-night, 

flow, date, etc.  To do this, the trap check time of the mi marked fish must be known, and the 

interval between release and check must vary from 0 to 24 over multiple efficiency trials.  When 

a trap is checked t hours (t < 22) after the previous check,  will be computed as: 

 

 
 

where c(t) is the catch of unmarked fish in the t hours since the last check and p(t) is the 

estimated (via logistic regression) proportion of a typical 24-hour catch caught within t hours 

under similar conditions.  Until sufficient data is available to adequately estimate the logistic 

regression model,  will be treated as missing when a full 24 hours has not been sampled.  In 

this case,  will be estimated using the GAM (below). 

 

The third method of computing  will be employed when  is missing for some reason (i.e., 

trap fished for >26 hours between checks).  In this case,  will be predicted after the season 

using a Poisson GAM model fitted to the  that met protocol.  The additive portion of this 

model will be of the general form:  

 

  (2) 

 

where s(j) is a smooth (spline) function of the day index (i.e., smooth function of Julian date), the 

xijk are covariates associated with trap i during day j, and the β’s are estimated coefficients.  In 

other words, the GAM has a non-linear smoothing component, s(j), as well as a linear 

component, symbolized by the .  The smoothing component requires choice of the degree 

of smoothing that the function should do.  Automatic and objective choice of the smoothing 

amount should be done by generalized cross-validation, or similar established technique. 

Estimation of  

 

Efficiency estimates at the i-th trapping location on day j will be computed from a binomial 

GAM, unless sufficient efficiency trials (≥3 per week) have been performed.  If sufficient 

efficiency trials have been conducted, and the assumption of constant efficiency between trials is 

justified, efficiency from the most recent trial will be used for .  When the most recent 

efficiency is not appropriate, a binomial GAM fitted to past and current efficiency trials will be  
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estimated and used to compute .  The additive portion of this GAM model will be of the form: 

 

   (3) 

 

where s(j) is again a smooth (spline) function of the day index (i.e., smooth function of Julian 

date), the zijk are covariates associated with the efficiency of trap i during day j, and the γ’s are 

estimated coefficients.  Again, automatic choice of the smoothing amount should be by 

generalized cross-validation, or similar established technique. 

 

The current abundance estimation methods employed at Red Bluff Diversion Dam utilize a linear 

regression model containing the proportion of flow sampled between checks (i.e., %Q) to 

estimate trap efficiencies.  The linear model used at Red Bluff Diversion Dam is a special case of 

the GAM proposed here (i.e., no s(j) and only one z).  The GAM proposed here allows for non-

linear smoothing and inclusion of additional factors that may influence efficiency.  For example, 

%Q, turbidity, and distance from release site could all be incorporated in the linear or non-linear 

parts of the model.  Note that the absolute accuracy of covariates in the model (e.g., flow, %Q, 

etc.) is not paramount.  It is only paramount that covariates in the model be consistently and 

objectively measured.  Because the GAM model is invariant to linear transformations of the 

covariates, a proxy for any covariate can be used provided it is a linear transformation of the 

desired covariate. 

Estimation of  

 

Once  and  are estimated, and  has been computed, abundance estimates for the site 

should be computed by summing over trap locations.  The total number of fish passing a 

particular site on day j should be computed as: 

 

 
 

where nij is the number of trapping locations fishing at site i during day j.  Abundance on day j 

can then be summarized in a number of ways.  The estimates  can be plotted against j to 

visually assess trends.  can be summed over a week, month, or year to produce weekly, 

monthly, or annual estimates of abundance.  The time series of  estimates can be subjected to 

further analysis to detect and quantify trends. 

  

Confidence Interval Estimates 

 

The abundance estimator  is a mixture of measured and modeled fish counts, as well as 

modeled trap efficiency values.  This mixture makes variance computation by traditional 

methods difficult because they rely on formulas and approximations.  Here, confidence intervals 
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for  will be computed by parametric bootstrap or Monte Carlo methods.  This method has been 

successfully used at Battle and Clear Creek to compute confidence intervals for their abundance 

estimates. 

 

Fish counts derived from trap checks are subject to measurement error.  For instance, it is 

possible for technicians to miss-count fish, miss-classify species, or miss-classify life history 

stage.  However, the measurement error inherent in raw counts is tiny compared to the day-to-

day and seasonal fluctuation in fish passage.  Day-to-day and seasonal fluctuation in fish passage 

is natural process variation, sometimes called sampling variation to distinguish it from 

measurement error.  Because measurement error in   is tiny compared to other sources of 

error, raw counts will be treated as known constants.  Similarly, the measurement error in raw 

efficiency estimates is tiny compared to process variation. 

 

Modeled values of  and   are not constants, and variation of these predicted values from 

their respective GAMs will be included by the parametric bootstrap procedure described below.  

Values of  that have been corrected for less than 24-hour fishing periods are not constants; 

however, it is assumed that there are relatively few of these values and that it will take some time 

before sufficient data exists to estimate the logistic regression.  If the logistic regression has been 

estimated, and numerous  have been corrected for less than 24-hour fishing periods, the 

coefficients of the logistic regression should be included in the parametric bootstrap method 

outlined below.  In this case, coefficients of the logistic regression would be treated the same as 

coefficients from the Poisson or binomial GAM. 

 

Coefficients in both the Poisson GAM and binomial GAM are maximum likelihood estimates.  A 

mathematical fact about maximum likelihood estimators is that their distribution converges to a 

multivariate normal distribution as sample size increases.  Let  represent the vector of 

smoothing and linear coefficients in the Poisson GAM model for missing fish counts, and let  

represent the vector of smoothing and linear coefficients in the binomial GAM for trap 

efficiency.  The parametric bootstrap procedure assumes both of these vectors are approximately 

multivariate normal random vectors, i.e., 

 

 

 
 

where MVN stands for the multivariate normal density function, and  and  are 

estimated variance-covariance matrices from the GAM model.   and  will be estimated 

using the 2
nd

 derivative of the likelihood, or the observed Fisher information matrix. 

 

Given these assumptions, the parametric bootstrap procedure proceeds as follows: 

 

1. Generate realizations from the multivariate normal distribution.  Specifically, generate 

the random vector  from a  distribution, and the random vector  from 

a  distribution.  If a logistic regression equation is in use to correct for less 



13 

 

than 24-hours of fishing between checks, a random MVN vector representing its 

coefficients should also be generated. 

2. Evaluate the Poisson GAM model in Equation (2) using   for all days with missing fish 

counts.  This will result in the random realizations  for all days with missing fish 

counts. 

3. Evaluate the binomial GAM model in Equation (3) using   for all days.  This will result 

in the random realizations  for all days. 

4. For all days with missing fish counts, generate random Poisson variables  from 

Poisson( ) distributions. 

5. For all days, generate random binomial proportions  from binomial( ) 

distributions, where  is the (rounded) average number of released fish in the two 

efficiency trials on either side of day j temporally. 

6. Recalculate  for all days via Equation (1), substituting randomly generated values 

where appropriate.  Specifically, use observed values of  on days when counts are 

present, and substitute  for  on days when counts are missing.  Substitute  for  

on days when efficiency has been estimated from the binomial model.  This results in a 

random series of abundance estimates for trap i of a particular site.  Label these random 

estimates . 

7. Recalculate abundance for the site (i.e., ) using the .  This results in a random time 

series of  values (for all j).  Summarize these  values the same way they were 

summarized to compute the original estimates (i.e., sum over weeks, months, years, etc.). 

8. Store the time series of  values and any derived summarizations. 

9. Repeat the above steps 5000 times.  This results in 5000 random realizations of  and 

subsequent summaries. 

10. Finally, construct 90% confidence intervals as the 5
th

 and 95
th

 percentiles of the 

appropriate set of 5000 random abundance values.  Specifically, the 90% confidence 

interval for  extends from the 5
th

 percentile to the 95
th

 percentile of the distribution of 

5000 .  Similarly for the confidence intervals on subsequent summarizations of .  

Error bands for visual displays of  can be computed by connecting the 5
th

 and 95
th

 

percentile values in a graph of  through time. 

 

A virtue of this parametric bootstrap technique is that it relies on only three parametric 

assumptions, and does not approximate any variances of derived estimators.  The parametric 

assumptions this procedure makes are (1) missing fish counts follow a Poisson distribution, (2) 

efficiency values follow a binomial distribution, and (3) coefficients in both GAMs follow a 

multivariate normal distribution.  A vice of this technique is that because it does not involve a 

mathematical formula, it must be computed using a conceptually simple but complex computer 

program.  Note also that in order to carry out the computation, all covariate values must be 

available to evaluate the GAM models. 
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Trend Detection 
 

There are two types of trend that can be detected from the time series of abundance estimates 

outlined above.  The first type of trend is abrupt change that happens in a very short period of 

time (e.g., 1 or 2 years).  The second type of trend is long-term steady changes in abundance that 

tend to move the mean in a single direction.  Due to the high variability inherit in most juvenile 

production estimates, abrupt change is difficult to detect.  Analyses to detect abrupt change can 

be run, but they will not be discussed here.  It is assumed that long-term steady changes are of 

interest and an analysis designed to detect such trends will be discussed below.  It should be kept 

in mind that the number of analyses that could be used to detect “trend” of some kind is large.  

The best analysis to detect trend is often a function of the specific objectives of the analysis and 

particulars of the data set being analyzed.  In this section, a generic trend detection analysis 

(regression over time) will be described.  It is hoped that this analysis will be applicable to a 

wide range of situations. 

 

Detection of long-term trends can be divided into 2 inference scenarios.  One inference scenario 

utilizes data from a single site and makes inference to parameters specific to that site.  The other 

inference scenario assumes data from multiple sites within a region will be pooled to make 

inference about a parameter defined on the region.  These latter inferences are called region-

wide.  Because multi-site region-wide trend detection analyses are generally extensions of 

single-site trend detection analyses, and because it is anticipated that single-site trend analyses 

will be more common, only single-site analyses will be discussed here.  A qualified statistician 

should be consulted when multi-site trend detection analyses are to be performed. 

 

It is assumed that trends in annual juvenile production are of interest.  This assumption implies 

that total annual production will be the primary response of interest.  It is assumed that an 

estimate of the standard error of annual production is available (see Confidence Interval 

Estimation above). 

 

Long-term trends are estimated and detected using a mixed or fixed effect linear model and 

testing for the presence of non-zero slope coefficients.  In matrix notation, a simple fixed effect 

model with no covariates (other than time) will be of the form: 

 

Y = Xβ + E  

 

where Y is the vector of annual production estimates,  

 

 

1

2

3

1

1

1

1 n

year

year

year

year

 
 
 
 =
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 
  

X

M M

,  

and 
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 

β ,  

 

is a vector unknown coefficients to be estimated, and E is a vector of unknown random errors.  

The yeari values in X are the actual years for each production estimate (e.g., 2006, 2007, 2010, 

etc.).  If production was not estimated in a particular year, that year would not appear in X.  

Consequently, n is the number of data points, not the number of years that the overall monitoring 

program has been collecting data. 

 

The above model assumes that the long-term trend at a site is linear, but linearity is not 

necessary.  Linearity of trend is not necessary because curvilinear or polynomial trends can be 

fitted and their coefficients tested for equality with zero.  If auxiliary variables, such as mean 

temperature, flow, ocean conditions, etc. are correlated with annual production, these covariates 

can be incorporated into the model to explain variation and improve precision.  If additional 

covariates are included, additional columns would be appended to X. 

 

If production estimates are approximately normally distributed and residuals of the model are 

uncorrelated, standard least squares methods can be used to estimate and test whether the slope 

parameter in ββββ is non-zero.  If the slope is significantly different than zero, significant trend has 

been detected.  If production estimates are not approximately normal, but residuals are 

uncorrelated, generalized linear model (GLM) estimation routines can be used to estimate and 

test whether the slope is zero.  If production estimates are approximately normal, and residuals 

are correlated through time or space, mixed effect linear model estimation techniques can be 

used to estimate ββββ and test for trend.  Finally, if production estimates are not approximately 

normal, and residuals are correlated through time or space, generalized mixed linear model 

estimation techniques can be used.  Alternatively, bootstrap methods can be used to test β1 = 0 in 

the uncorrelated case, and block bootstrap methods (Lahiri, 2003) can be used in the correlated 

case.  Bayesian analyses for each of the above cases are also available (consult a qualified 

statistician). 

Conclusions 
 

A unified data analysis procedure is feasible for the RST program in the Central Valley of 

California.  Most RST sites are already collecting the minimum set of data required to carry out 

the estimation procedure set forth above.  The database, while complex, need only house the 

minimum set of variables to be useful for estimating abundance.  The estimation procedure is 

flexible enough to allow missing counts, varying trap check intervals, variable efficiency trial 

schedules, and variable numbers of efficiency trials across sites. 

 

If absolutely necessary, estimates of fish passage can be made during times of high flow by 

extrapolating the GAM models if the appropriate covariates are collected and if it can be 

assumed that the basic form of the model holds during high flows.  If this assumption does not 

hold, estimates of fish passage during high flows cannot be made.  As the GAM models are 

refined over time with more and more data, predictions should become more and more accurate 
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and precise.  For instance, it is not too much to hope that one day a RST will continue fishing 

during high flows.  By using this information, however scant, to help estimate coefficients of the 

GAMs, researchers may one day be comfortable with abundance estimates during high flows. 
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